FRACTURE MECHANICS OF FUNCTIONALLY
GRADED MATERIALS

Final Technical Report

F. Erdogan

Lehigh University
Bethlehem, PA 18015

October 1996

Prepared for
U.S. Air Force Office of Scientific Research

Grant No. F49620-93-1-0252

—— SRR :
Rttt BT T e e
L e S Te S T

A s

Rpprovad o | Zpechra® a;*ﬁ 7 i
Dwms::gm“ Unlantiog i
e e

10970616 096




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

athering and maintaining the data needed, and completing and reviewtng the collection of information. Send comments regarding this burden estimate or any other aspect of this
?ollectlon of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for tnformation Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
' FINAL 4/1/93-8/31/96
4; TITLE AND SUBTITLE S. FUNDING NUMBERS
"Fracture Mechanics of Functionally Graded Materials" AFOSR
F49620-93-1-0252
Grant

| 6. AUTHOR(S)
|

Dr. Fazil Erdogan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . REPORT NUMBER
Lehigh University

; 19 Memorial Drive West 533033
Bethlehem, PA 18015

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Air Force Office of Scientific Research
110 Duncan Avenue, Suite B115
Bolling AFB, DC 20332

11. SUPPLEMENTARY NOTES
Most of the significant results obtained during the course of this research have been re-

ported in eleven manuscripts which have been published in or acceBted for publication b¥ vari-
ous journals. The technical monitor of this research project was Dr. Walter F. Jones, AFOSR,
Bolling Air Force Base, DC 20332-0001l. -

12a. DISTRIBUTION / AVAILABILITY STATEMENT : 12b. DISTRIBUTION CODE

Approved for publie release;
distributionunlimited.

13. ABSTRACT (Maximum 200 words) * Functionally graded materials are generally two-phase composites
with continuously varying volume fractions. Used as coatings and interfacial zones, they help
to reduce mechanically and thermally induced stresses caused by the material property mismatch
and improve the bonding strength. In this project some basic problems concerning fracture
mechanics of graded materials are identified, general analytical methods for solving the re-
lated crack problems are developed, the singular behavior of the solutions for typical mater-
ial nonhomogeneities is examined, and solutions of some benchmark problems are obtained. The
results are intended to provide technical support for material scientists and engineers who
are trying to develop methods for processing these materials and for design engineers who are
interested in using them in technological applications. Typical applications of functionally
graded materials include thermal barrier coatings of high temperature components in gas tur-
bines, surface hardening for tribological profection, and as interlayers in microelectronic
and optoelectronic components.

14. SUB:IECT TERMS ) 15. NUMBER OF PAGES
Functionally graded materials; fracture mechanics; surface cracking;

graded coatings; graded interfacial zones; debonding; thermal barrier 16 PRICE CODE

coatings
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION ] 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PA(_SE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited

NSN 7540.n1.72n.ccnn . -




FRACTURE MECHANICS OF FUNCTIONALLY
GRADED MATERIALS

Final Technical Report

F. Erdogan

Lehigh University
Bethlehem, PA 18015

October 1996

Prepared for
U.S. Air Force Office of Scientific Research

Grant No. F49620-93-1-0252




TABLE OF CONTENTS

Report documentation page

Cover page
Table of Contents
Abstract
1. Introduction
1.1  Thermal barrier coatings
1.2 Wear-resistant coatings/abradable seals
1.3 Oxidation-resistant coatings
2. Objectives of the research program -
3. Fracture mechanics of graded materials - stress singularities
and benchmark solutions
3.1  Fracture mechanics - elementary concepts
3.2  Fracture mechanics of graded materials - embedded cracks
- 3.3 The debonding problems for FGMs
3.4  Cracking perpendicular to interfaces and surfaces
3.5  Stress relaxation due to periodic surface cracking
3.6  End effects on stress concentration and edge debonding
3.7  Some concluding remarks
4. References

14

1

iii

12
15
19
22
24

24




FRACTURE MECHANICS OF FUNCTIONALLY
GRADED MATERIALS

ABSTRACT

Functionally graded materials are generally two-phase composites with
continuously varying volume fractions. Used as coatings and interfacial zones, they help
to reduce mechanically and thermally induced stresses caused by the material property
mismatch and to improve the bonding strength. In this project some basic problems
concerning fracture mechanics of graded materials are identified, general analytical
methods for solving the related crack problems are developed, the singular behavior of
the solutions for typical material nonhomogeneities is examined, and solutions of some
benchmark problems are obtained. The results are intended to provide technical support
for material scientists and engineers who are trying to develop methods for processing
these materials and for design engineers who are interested in using them in technological
applications. Typical applications of functionally graded materials include thermal
barrier coatings of high temperature components in gas turbines,. surface hardening for
tribological protection, and ‘as ‘interlayers in microeléctronic and optoelectronic
components.

The results found show that by eliminating the discontinuities in material property
distributions the mathemaitcal anomalies regarding the crack tip stress oscillations for the
interface cracks and the nonsquare-root singularities for cracks intersecting the interfaces
are also eliminated. From the viewpoint of fracture mechanics the importance of this
result lies in the fact that in analyzing the components involving functionally graded
materials one can use the existing crack tip finite element modeling developed for
ordinary square-root singularities and apply the energy balance-based theories of
conventional fracture mechanics. The benchmark problems considered in this project are

concerned primarily with surface cracking and debonding.




1. INTRODUCTION TO FUNCTIONALLY GRADED MATERIALS

To meet the expected stringent demands of future technologies in power
generation, transportation, aerospace, and microelectronics, in current research a greater
emphasis will have to be placed on material design, more specifically, on developing new
materials or material systems tailored for specific applications. Generally such materials
tend to be composites and intermetallics having homogeneous bulk properties. The
composites may be fiber or filament reinforced, particulate, or layered in structure. Many
of the laminated materials, thin films and coatings fall into the latter category. A
common feature of composites is that they consist of bonded dissimilar homogeneous
materials. Consequently, in studying mechanics, particularly failure mechanics of such
materials the nature of interfaces or interfacial regions would play an extremely important
role. From a mechanics view point, material property discontinuities across the interfaces
would have generally two undesirable consequences, namely higher residual, thermal and
mechanical stresses, and weaker bonding strength. To circumvent these difficulties, very
often the interfacial regions are modified by intorducing a third medium in the form of an
interlayer, mechanically roughening the surfaces, or using coupling agents.

An alternative concept which may also be used to overcome some of the

~ shortcomings of piecewise homogeneous materials, particularly of layered dissimilar

materials, would be the introduction of interfacial regions or coatings with graded
thermomechanical properties(‘) [1]-[7]. Thus, by Vérying the volume fractions of the
constituents between zero to one hundred percent, thereby obtaining a continuous
through-thickness material property variation, it is possible to obtain not only smoother
stress distributions and lower stress concentrations [8*], [9], but also higher bonding
strength [10]. For example, in [8*] it was shown that the point of intersection of the free
end and the interface between a homogeneous coating and the substrate is a point of

stress singularity and, consequently, a potential location of debonding crack initiation.

®) Numbers in brackets refer to the references listed in Section 4 of this report. The
references marked by an (*) describe research which is fully or partly supported by the
current AFOSR grant.




On the other hand, if the homogeneous coating is replaced by a graded layer, the
singularity disappears and the stress distribution becomes considerably smoother.

In many of the deposition and bonding processes used in ceramic coatings, it is
difficult to obtain the desired strength for the interfacial region. This is due largely to
poor adhesion and partly to high stress concentrations. The adverse influence of both of
these factors can be reduced significantly by introducing a graded interfacial zone
between the two materials. The technique can be particularly useful for material pairs in
which the bonding is inherently difficult. for example, in [10] it was shown that for a
diamond film synthesized over a 50/50 W/Mo alloy by using a DC plasma jet, the
measured bonding strength is less than 10 kg/cmz. On the other hand, if a graded
interfacial zone is introduced by first plasma-spraying the substrate with tungsten carbide
and then gradually adding increasing amounts of methane and hydrogen before growing
the diamond film, the adhesive strength is measured to be over 150 kg/cmz.

These particulate composites with continuously varying volume fractions are
called functionally graded materials (FGM). By controlling not only the composition of
profile but also the microstructure, the concept of FGM’s could provide a great deal of
flexibility in material design. As the processing techniques improve, the potential for
special applications of FGM’s appears to be nearly unlimited. However, in the
immediate future the primary use of these new materials will most likely be limited to

thermal barrier coatings, wear-resistant coatings and corrosion-resistant coatings [11].

1.1  Thermal Barrier Coatings

Within the past decade or so considerable progress has been made in using
ceramic coatings to protect metallic components from high temperature turbine
environments. These thermal barrier coatings (TBC’s) are currently being used in
conjunction with air cooling to prolong the life of hot-section turbine components in
aircraft engines. The application of TBC’s also offers the possibility of increasing the
thermodynamic efficiency of land-based turbines by increasing the inlet temperature of
gases. Thus, the TBC technology is considered by many as a viable means for

developing more efficient aircraft engines and stationary gas turbines. There are,




however, several major technical issues involving the next generation of TBC’s, namely
(i) improvements in processing techniques from both economic and performance
standpoints, (ii) understanding the failure mechanisms of TBC’s in simulated and actual
turbine environments, and (iii) developing characterization and test méthodologies to
measure time and temperature-dependent characteristics of TBC’s for reliable life
prediction. .

The current approach for accommodating the material property mismatch between
the ceramic coating and metallic substrate is to make the ceramic layer to be more
compliant (or “strain tolerant”) by introducing defects such as microcracks, porosity and
segmented columnar microstructure. The difficulty with this solution is that the
particular microstructural features that provide compliant coatings also provide rapid
diffusion paths for oxygen. The experience seems to indicate that by far the most critical
factor limiting the performance of the state-of-the-art TBC’s is the spallation of the
ceramic layer which takes place either along a plane parallel to the ceramic-bond coat
interface (as in plasma-spray coatings), or along the interface between the bond coat and
its oxide scale (usually A, O;) (as in coatings processed by using electron beam physical
vapor deposition). In both cases the life of the coating is controlled by the oxidation time
and the number of thermal cycles.

The basic conjecture behind the FGM concept is tha;c by replacing sharp interfaces
with graded interfacial zones or by replacing homogeneous ceramic layers with
metal/ceramic FGM’s, it is possible to improve the resistance of the coating to spallation

as a result of reduced stress levels and improved bonding strength.

1.2  Wear-Resistant Coatings/Abradable Seals

One obvious application of ceramic coatings apears to be to provide the necessary
hardness or wear resistance to the surfaces of structural components transmitting forces
through contact, such as gears, bearings, cams and machine tools. Intuitively it is clear
that the fatigue life of these components may be improved quite considerably if one uses

a graded rather than a homogeneous ceramic coating on the metallic substrate. In these




load-transfer components FGM coatings would provide the necessary surface hardness
without sacrificing the overall toughness.

A related application of the FGM interfacial zones or coatings may be found in
the abradable seals used in some stationary gas turbines to help minimize the gas leakage
through the gap between the tips of rotating blades and the turbine shroud. The problem
is again a contact problem and the primary material property requirements are
abradability and toughness. The main components in the shroud are the metallic structure
or the substrate, bond coat, high density ceramic and very low density ceramic with a
graded zone replacing every sharp interface [11].

In the past wear and corrosion-resistant coatings have been used quite extensively
in industrial machinery. The coating material has been metals such as stainless steels,
Mo-based alloys and WC-Co as well as ceramics such as A, 0O;-TiO, and Cr,0;. For
example, WC-Co and Cr;C, / NiCr have been extensively used in aircraft industry to coat
various turbine/compressor components and mid-span stiffeners for improved wear-
resistance. Other applications of wear-resistant coatings have been in printing rolls, steel
mills, petrochemical industry, and automobile industry. Most of these coatings have been
deposited by using a thermal spray process. Since thermal spray technique is readily
suitable for grading the composition of the coating, service life improvements can be

obtained in all applications of wear-resistant coatings by using the FGM concept.

1.3 Oxidation-Resistant Coatings

The main desirable characteristics of an ideal TBC appear to be low conductivity
for thermal insulation, high coefficient of thermal expansion to match that of the metallic
substrate, and high resistance to oxygen diffusion. It is highly unlikely to find all these
favorable properties in a single material. Many of the well known ceramics have either
high conductivity and low oxygen diffusivity or low conductivity and high oxygen
diffusivity. to prevent oxygen diffusion at some point a layer of Al,O; or mullite
(Al,0402Si0,) may be needed. However, these materials have considerably higher
thermal conductivity than that of, for example, YSZ (ytria-stabilized zirconia). Thus, the




problem appears to be an optimal design of a multi-layered structure, including graded
interfacial zones and coatings.

Typically, the current design of TBC’s consists of a partially stabilized zirconia
coating deposited on an intermediate metallic bond coat (e.g., NiCr AlY) which is plasma
sprayed on the (superalloy) substrate [7]. the main function of the bond coat is to protect
the substrate against oxidation. It also helps to reduce thermal expansion mismatch
between the ceramic coating and the metallic substrate, and provides surface texture to
improve bonding. At high temperatures an oxide (Af,O;) scale is formed along the PSZ-
bond coat interface. Even though this Al,O; layer forms an oxygen diffusion barrier, it
also introduces a weak cleavage plane which, under thermal cycling, may lead to
spallation. This difficulty may be overcome by introducing a graded (NiCrAl,Y-PSZ)

layer between the bond coat and the ceramic layer [7].

2. OBJECTIVES OF THE RESEARCH PROGRAM

The obj ectives of the research program supported by the AFOSR Grant have been

e To identify some basic problems concerning the fracture mechanics of
Sfunctionally graded materials.

e To develop general methods for solving the related crack problems.

¢ To examine the singular behavior of the solutions of the crack problems in
FGM’s and compare them with the corresponding results in homogeneous and
piecewise homogeneous materials.

e To obtain solutions for some benchmark problems.

In general, the results of the research program are intended fo provide technical
support for material scientists and engineers who are trying to develop methods for
processing FGMs and for design engineers who are interested in applications. -
Specifically, the crack tip singularities found and the benchmark solutions provided
would be quite useful in the development and testing of finite element moldes for solving

more complex problems involving FGMs.




3. FRACTURE MECHANICS OF GRADED MATERIALS

- STRESS SINGULARITIES AND BENCHMARK SOLUTIONS

In this section, after describing some elementary concepts of fracture mechanics,
a brief discussion of the topic as it relates to the graded materials is presented. Stress
singularities for each typical crack geometry are then examined and sample results
obtained from a series of benchmark solutions are discussed. the analytical details and

more extensive results are given in References [8'] and [12‘]-[20*].

3.1 Fracture Mechanics - Elementary Concepts

In a broad sense “fracture” is creation of new surfaces in solids. The macroscopic
theories of fracture are based on the notions of continuum mechanics and classical
thermodynamics. In studying the subject, it is implicitly assumed that the material
contains some macroscopic flaws and the medium is homogeneous in the sense that the
size of these flaws is large compared to the characteristic microstructural dimension of
the materials. The problem is to study the effect of the applied loads, flaw geometry and
the environmental conditions on the fracture of the solid - a subject which has come to be
known as fracture mechanics. The fundamental criterion of fracture initiation and
propagation is based on the energy balance concept.' Let the solid contain a dominant |
flaw which is usually considered to be a planar crack of surface area A. Under given
external loads if the crack grows by an amount dA in time dt, the thermodynamic
equilibrium of the solid requires that

du _ dv . dl _ dD

dt d  dt  dt

where U, V, T and D respectively are the work of the external loads, the recoverable

;. M

internal energy, the kinetic energy, and the sum of all dissipated energies such as surface
tension, plastic work, viscous dissipation, etc. If the energy dissipation takes place only
around the advancing periphery of the crack, in the quasi-static case T is negligible and

defining dD/dA=},, (1) may be expressed as

gq U-V)=1, . 2




In the fracture criterion given by (2) the left hand side is the energy available and
J. is the energy required to create a unit area of new fracture surface. They are also
known as the crack driving force and the fracture toughness, respectively.

If the solid is brittle or quasi brittle, the characteristic size of the zone of energy
dissipation around the crack front is generally small in comparison with the length
parameter of the crack. It may, therefore, be assumed that the energy (U-V) flowing into
the fracture zone will come from the elastic bulk of the solid and will not be critically
dependent on the details of the stress state very near the crack tip. Furthermore, it is also
clear that in this case the stress state in the elastic bulk of the actual solid will not differ
from a purely elastic solution to any significant extent. Consequently, one may be
justified in calculating the crack driving force by using the linear elastic crack solution.
By using the concept of crack closure it can then be shown that the increment d(U-V) of
the energy available for fracture may be evaluated from the asymptotic stresses and the
crack opening displacements near the crack tip which, in turn, may be obtained from the

three dimensional elasticity solution as follows:

0,8 =L £, @)+ T £, ) (j=%) 6

0,0 == fy0) . (=x3) @

v*—v'sg—a;—vz)klﬁ,W—u"s%(—l—zﬂKz@ , (5)

w—w =5 5 | ©)
m

where k,, k, and k, are the modes I, II, and III stress intensity factors, f,;, f,,; and f;
are known functions and E, v and p are the elastic constants, E =2p(1+v). From the

crack closure energy it may then be shown that

l__ 2 _y?
B g,y =M e g = i 0

b = = =
1 E E 2’3211

d
b=—(U=V)=b+b; +5, (8)




where J is the total energy available for fracture.
Equation (7) indicates that one may also use k; in place of ¥, as the measure of

the crack driving force. For mode I loading conditions, for example, defining

K, =k1.\/—“— s Yo =l s Kie ='\/‘bICE/(1_v2) s )

the fracture criterion (2) may be expressed as
K <K, . (10)
Equation (10) has proved to bel very useful in considering the fracture stability.
However, perhaps the most useful application of the stress intensity factors may be found

in analyzing the subcritical crack growth proéesses.

3.2 Fracture Mechanics of Graded Materials-Embedded Cracks

In studying the fracture mechanics of FGMs one may have to deal with a number
of distinct problem areas. The first is the investigation of the nature of stress singularities
near the tip of a crack embedded ina nonhomogeneous medium. The second is the
general problem of debonding and the effect of a possible “kink” in material property
distributions on the behavior of stress singularities. The third is the basic surface
cracking problem and the nature of the stress singularities for cracks intersecting the
interfaces. The fourth is the problem of stress relaxation due to periodic surface cracking
in FGM coatings. The fifth significant problem area is concerned with the stress
concentrations and the resulting delamination cracking at the free ends of FGM coated
homogeneous substrates under residual or thermal stresses. In the following sections
these problem areas are briefly discussed and some examples are given.

To examine the influence of the material nonhomogeneity on the asymptotic
stress state near the crack tips, we first consider the plane elasticity problem for an
infinite medium containing a line crack (Fig. 1). For simplicity we will assume that the

Poisson’s ratio v of the medium is constant and the shear modulus is approximated by

K(x,y) = p,exp(Px +vy) , an




where p,, pandy are known constants. This problem was solved for a crack along
y=0, -a<x<a under arbitrary loading conditions [12*], [22‘]. It was shown that near the

crack tip x=a the stresses have the following asymptotic behavior:
o, (x,y) = exp[r(B cos6 + sin9)][—]£‘—f ©)+—2 £ (e)J G,j=x,)
ij :y p Y ‘\/5 1§ \/57 2§ b s.] :y t]
12)

where the stress intensity factors k, and &, are defined by
k,(a) = lim/2(x — a)o »(%0) , ky(a) =lim J2(x - a)o »(x,0) , (13)
and .the functions f; and f,, are identical to those found for the homogeneous materials

given in (3). Note that the asymptotic stress states for homogeneous materials (3) and
FGMs (12) are identical only ét r=0. However, since the crack opening displacement is
also influenced in a way similar to stresses, the crack driving force (or, for “fixed grip”
conditions, the strain energy release rate) was found to be identical to that calculated for
the homogeneous materials, namely

_n(l+x)
~ 8p(a0)

where k=3-4v for plane strain and k=(3-v)/(1+v) for plane stress conditions.

(k! +k7) 19

Some sample results for an embedded crack of length 2a in an infinite medium
under plane strain conditions are given in Table 1. Referring to Fig. 1 and (11) we first
define

x'=xcosO® +ysinO,p=wcosB, y=0sinb, o>=p>+y?, (15

u(x,y) = p(x') = p, explox’) . (16)
The medium is assumed to be loaded by fixed grips away from the crack region with
€, (x',F0)=¢,. Thus, the normalizing stress intensity factor for the results given in
the table is

ky =2(1+V)p,g,Va . 17
Note that the crack orientation angle 6=0 corresponds to a mode I problem for which

k,(¥a) = 0, whereas for © = /2 the loading is parallel to the crack and, consequently,

10




Table 1. The effect of material nonhomogeneity parameter aw and the crack orientation
angle 0 on the stress intensity factors; v=0.3; loading: uniform strain away from the crack
region, € ., (x',F0) =¢€,.

an O/n k,(a)/’ky k;(-a)’ky ky(a)/ky ky(-a)/ky
0 1.196 0.825 0 0
0.1 1.081 0.750 -0.321 -0.254
0.2 0.781 0.548 -0.514 -0.422
0.25 0.3 0.414 0.290 -0.504 -0.437
0.4 0.121 0.075 -0.304 -0.282
0.5 0 0 0 0
0 1.424 0.674 0 0
0.1 1.285 0.617 -0.344 -0.213
0.2 0.925 0.460 -0.548 -0.365
0.5 0.3 0.490 0.247 -0.532 -0.397
0.4 0.146 0.059 -0.314 -0.269
0.5 0 0 0 0
0 6.317 0.115 0 0
0.1 5.376 0.117 -0.867 -0.037
0.2 3.315 0.115 -1.155 -0.090
2.5 0.3 1.441 -~ 0.082 -0.900 -0.158
0.4 0.369 0.004 -0.429 -0.179
0.5 0 0 0 0

Table 2. Stress intensity factors for a plane strain and a penny-shaped crack in a graded
medium under tension o, perpendicular to the plane of the crack; v=0.3.

wa 0 0.1 0.25 0.5 1.0 2.5 5.0
Plane Strain Crack

ki/cova 1 1.008 0.036 1.101 1.258 1.808 2.869
ky/ogya O 0.026 0.065 0.129 0.263 0.697 1.567
Penny-Shaped Crack

K, /(300./2) 1 1.002 1.012 1.038 1.118 1.442 2.083
K, /(EGDJ;) 0 0.017 0.041 0.083 0.168 0.440 0.960

all stress intensity factors are zero.

11




Table 2 shows some limited results comparing plane strain and penny-shaped
crack solutions for a graded material under uniform tension o, perpendicular to the plane
of the crack where ®=0 corresponds to the results for a homogeneous medium. The table
shows that the stress intensity factors in FGMs are higher than that in homogeneous
materials and that the influence of the material nonhomogeneity on the stress intensity
factors is more severe for a plane strain than for a penny-shaped crack. For further results
see [12], [22], [23] and [24]. Also, for the solution of embedded crack problems in an
FGM layer under mechanical or thermal loading see [157] and [16'].

3.3 The Debonding Problems for FGMs

Consider the crack problems shown in Figs. 2a and 2b. Figure 2a describes the
debonding problem in piecewise homogéneous materials, whereas Fig. 2b refers to a
FGM bonded to a homogeneous substrate. In both cases h=0 refers to an “interface

crack”. In terms of the unknown functions

P 9t -
fl(x)—ax(v v, fi(®) ax(u u) , (18)

in each case the formulation of the problem may be reduced to a system of integral

equations of the form

1 %<&, 8, s s _ 1+xk
ml D3 el CORYACH OL S NOLAR

(i=12), —a<x<a (19)

a

where the kemnels k; are known functions which depend on h and the material

parameters, k; is associated with the infinite medium, k,.f represents the geometry of the
medium, and

P (%) =6 ,,(x,0) , p,(x) =0, (x,0) ' (20)
are the crack surface tractions which may be expressed in terms of the external load. The
kernels k,.j.' are bounded for all values of h. For h>0 the functions k; are also bounded.

Thus, for h>0 the crack is an embedded crack and (19) would lead to the asymptotic
stresses given by (3) and (12) for problems described by Figs. 2a and 2b, respectively.

12




On the other hand, for h=0 in problem 2a the kernels k;, and k;, would become a

Cauchy kernel (¢ —x)™" and &;, and k;, would degenerate to a delta function §(# —x)
[25], [26]. Consequently, in this interface crack problem the integral equations become
one of the second kind leading to the well-known anomalous stress oscillation behavior
very near the crack tips.

For h=0 in problem 2b, however, the leading terms of the kernels k; become

s s T t—x
ki =k =_?'Ylt__‘x‘|

b

ki, =—k;, =+yzlog|t—x|,v =tang, , 1)

which would indicate ‘that (19) would remain to be an ordinary system of singular integral
equations of the first kind and would have the asymptotic solution given by (12). It is,
therefore, seen that the anomalous behavior of the crack tip stress oscillations may be
eliminated by “smoothing” the material property distribution (or by removing the
property discontinuity). A qualitative description of the interface crack geometries and
the singular kernels k; may be seen in Fig. 3.

Figure 4 describes an interface crack problem for a FGM coating bonded to a
homogeneous substrate. In actual applications the medium contains an additional layer of
bond coat between the substrate and the FGM coating. Typically the materials for the
bond coat and the substrate are NiCrAlY and MCrA!Y, respectively, wehre M stands for a
“metal” (e.g., NiCo). Since in most cases these two materials have approximately the
same thermomechanical constants, in the example considered the bond coat is assumed to
be an extension of the substrate. Because of the oxide scales (usually A/,O;) forming
along bond coat/FGM interface, it is also assumed that this interface is the weak cleavage
plane and contains a crack of length 2a. In the example h; and h, are the thicknesses and
K and p,(y) are the shear moduli of the substrate and the FGM, respectively. The

nonhomogeneity constant y is defined by

ha) = By oxp) 7 = loglia () /] - @2)

2

13




The problem is solved under uniform crack surface pressure, ¢, (x,0) = —c, or shear,
c,,(x,0)=—-1,. In each case the calculated stress intensity factors k;, k, and the strain

energy release rate 4 are normalized with respect to the following:

k0=0'0«/;,k0=10«/a—,b0=f—%i—1-)-cf,a,bo=n(;+l)r§a, (23)

23} My

which correspond to the values obtained for an infinite medium under plane strain
conditions and uniform tractions ¢ , (x,¥®©) =6, or 6, (x,¥%) =1,.

Some sample results showing the effect of material nonhomogeneity constant y
and the relative dimensions h;/a and h,/a are given in Figures 5-10. In all cases y=0
corresponds to the homogeneous medium. As physically expected, as y increases, the
stiffness of the coating increases, leading to decreasing crack driving force 4.

Clearly the problem is one of mixed-mode and unless the plane of the crack is a
weak cleavage plane (e.g., due to oxidation), the crack may not grow in a co-planar
fashion. In this case, the stress intensity factors k; and k, may be used to determine the
probable crack growth angle, 6,. This angle, measured from‘the positive X axis may be
calculated from 0o, /00 =0, 04, (r,8,) >0 [27], or

k;sin®, +k,(3cos6,-1)=0,

k, cos’ %9— - —;—kz sinf, >0 . (24)
Some calculated values of 6, for v=0.3, h,/a=100, h,/a=0.25, 0.5, 1, 2, 10 and for uniform
crack surface presure o, are shown in Fig. 11. The figure indicates that if the medium is
isotropic with regard to the crack growth resistance ¥, near the crack tip, maximum strain
energy release and, as a result, further crack growth would take place in a direction
toward the less stiff material. On the other hand, if b, is 6-dependent, then the crack
growth direction 6, would be determined by maximizing 4#(8)/5.(0), #(8) being the strain
energy release rate for a small radial crack extension in the direction of 6. Further results
may be found in [14‘].

It should be noted that in formulating this problem the crack surface tractions are

assumed to be arbitrary functions of x. Therefore, the technique described in [14‘] may
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be used to solve any quasi-static interface crack problem involving FGM coatings after
properly separating the solution for the uncracked problem. Also, for the validity of the
solution it is essential that the normal crack opening v'-v be positive. Otherwise the
problem must be treated as a crack/contact problem, the condition k;(-a) determining the

crack closure point [16*].

3.4 Cracking perpendicular to interfaces and surfaces

In ceramic and ceramic/metal FGM components generally a common mode of
failure is surface cracking which could penetrate to the interface and cause spallation.
The main problem here is assessing the influence of the material nonhomogeneity on the
fracture mechanics parameters (such as b and k;) for surface cracks and cracks
terminating at an interface. Figures 2c and 2d show the crack geometry for the latter
problem in piecewise homogeneous and in nonhomogeneous materials. Because of
symmetry, generally these are all mode I problems. Thus, if we define the unknown

function and the crack surface traction by
80 = 20 (50 L () =0, (80), a<x<b 25)
X

the integral equation for the general problem may be expressed as

b i ’
i s ke + b, nlgar =
m, =X 2

p(x) , a<x<b, (26)

2

where, again, k; is associated with two bonded semi-infinite media, k¢ represents the
geometry of the composite medium, and k; is always bounded. for an embedded crack,
a>0 and k; is also bounded. However, for a=0, k, could be singular. In fact, for a=0 in

piecewise homogeneous materials (Fig. 2c) it is known that

2

c c, X C.X
k(x,t)=——+——+——
t+x (+x)° (t+x)

, (0<(t,x)<d), 27)

where c,, ¢,, and c; are bimaterial constants [28]. Note that as t and x approach the end
point x=0, k, tends to infinity and, hence, would contribute to the singular behavior of the

solution giving
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Gg.(r,e):k—;g,j(e),0563n,(i,j=x,y),0<oc <1 (28)
¥

where g;; are known functions, k; is a “stress intensity factor” and the power of stress
singularity o is a function of the bimaterial constants. Generally a>1/2 for p,>p; and
o<1/2 for p,<p;, a=1/2 being the value for p,<p;. From the viewpoint of fracture
mechanics, the consequence of having a#1/2 is that as the crack intersects the interface,
the stress and deformation states would not remain self-similar and, hence, it would not
be possible to use the fracture theories based on the energy balance concept to calculate a
strain energy release rate or to use the stress intensity factors as the crack driving force.
This, then, is the second anomalous behavior regarding the stress state near the crack tip
in bonded dissimilar homogeneous materials.

If we now “smooth” the material property distribution and assume that medium 1
is a FGM (Fig. 2d), it can be shown that for a=0 the leading terms of k; become [29]

dt dyx d,tx
+ + 5
t+x t+x (t+x)

k(x,t)= +d, log(t +x) | (29)

where d,...d, are bimaterial constants. Note that the kernel given by (29) is square
integrable and, therefore, would have no contribution to the stress singularity at x=0.
- Consequently, the stresses would have the standard square-root singularity and, by
smoothing the material property distribution through the introduction of FGM, the
anomalous behavior of the stress state would again be eliminated.

Figure 12 shows the mode I stress intensity factor for a=0 and p(x)=-c, in Fig. 2d.

The normalized stress intensity factors shown in the figure are defined by

k(@) =k, (0)/6,Vb/2 , k(b)=k,(b)/c,"b/2 , (30)

k,(0) = ii_l)rolmc L (50) 5 K (B) = lggmq 2y (10) . (31)
The shear modulus of FGM in Fig. 2d is assumed to be 4

K, (x) = p, exp(Px) (32)

where p, is constant. It is thus seen that for f—o p;—0 and the problem becomes an

ordinary edge crack problem in a homogeneous half space for which

k,(0) > o , k,(b)—> 158610 ,vb/2 . (33)
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For p=0 the medium is homogeneous and
k,(0)=k,(b)=0c,vb/2 . (34)
In the other limiting case of p=-oo, p; becomes infinite and for the resulting problem of a

crack terminating at the interface we have

k,(0) >0, k,(b) > 08710 6 ,vb/2 . (35)
The analytical details and further results for this problem may be found in [29].

The basic problem of surface cracking in a FGM layer is shown in Fig. 13. In this
case equations (25) defining the unknown and input functions and (26) describing the
form of the integral equation are still valid. In the surface crack problem under

consideration it can be shown that [15‘]

6x 4x*
+ 2 3
t+x  (t+x)° (t+x)

k(1) = - (36)

which is identical to the singular kernel found for a homogeneous medium with an edge
crack [28].

Some sample results for the layer shown in Fig. 13 under fixed-grip loading or
constant strain €}, =€,, membrane loading N and bending moment M are given in
Figures 14-19. Figures 14-16 show the stress component G,y in the uncracked layer. In
this problem, too, it is assumed that the Poisson’s ratio is constant and the Young’s
modulus at x=0 and x=h is given.by E, and E,, respectively, E)/E, being the measure of
material nonhomogeneity. The Young’s modulus E(x) and the material nonhomogeneity

parameter y are defined by
E@)=Ee” .y =7 108(E, [ E) (37

The normalizing stresses shown in the figures are defined by
c,=Eg,/(1-v?),0,=N/h,6,=6M/h* . (38)
Note that the results given for Ey/E;=1, 2, 5, 10, 20 in Figures 15 and 16 may also be
interpreted for E,/E,=1, 0.5, 0.2, 0.1, 0.05, respectively. The membrane resultant N, =N
is applied along x=h/2 away from the crack region. Since the ends are free to rotate the

stress distribution shown in Fig. 15 exhibits considerable bending effect.
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The mode I stress intensity factors k; corresponding to the stresses shown in
Figures 14-16 are given in Figures 17-19, respectively. In Figure 17, the normalizing

stress o is the value of o, at x=0 in the uncracked medium. Thus, for all values of

E,/E,, as the crack length b approaches zero, &, /o 0\/5 would approach 1.1215, the edge
crack solution for a homogeneous half plane [28]. Similarly, note that under membrane
loading and bending, as b—0, the limiting value of the stress intensity factor would tend
to

k (b)=112150 (OB , (b<<h) (38)
where o,(x) is the stress in the uncracked medium. It should be observed that in all
cases k;(b) becomes unbounded as b—h (Figures 17-19).

Some results for a surface crack in a FGM layer under thermal loading are shown
in Figures 20-23. Figure 20 shows the stress distribution o,,(x) in a FGM layer with
E,/E;=5 and o,/a;=2 undergoing a uniform temperature change T-T,, where a is the

thermal expansion coefficient. Note that the temperature is normalized with respect to T,

- and (T-T()/To=(T/Ty)-1. Hence, the stress o,,(x) is lienarly dependent on (T/T¢)-1. In all

cases the normalizing stress is defined by

c,=EaT,/(1-v) . (39)
The stress o,,(x) for a steady-state heat conduction problem ih a FGM layer with
E,/E;=10, a,/a;=2 and A,/A,=10 is shown in Fig. 21, where A(x) is the coefficient of heat
conduction. In these examples the functions E(x), ou(x) and A(x) are assumed to be of the
form given by (37). The normalized stress intensity factors for an edge crack in a FGM
layer (Fig. 13) under thermally induced stresses given by Figures 20 and 21 are shown in

Figures 22 and 23, respectively. In these figures the normalizing stress intensity factor is

C, b where G, is defined by (39).
The analytical details of the solution of the surface crack problems and further
results may be found in [15*] and [16‘].
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3.5 Stress Relaxation Due to Periodic Surface Cracking

The mud-flat type periodic surface cracking of ceramics or ceramic coatings under
residual or thermal stresses seems to be a commonly observed mechanism through which
the stresses or energy are relieved. Usually such materials are under in-plane biaxial
strains of equal magnitude. An important mechanics problem here is the determination of
the length parameter describing the surface crack periodicity in terms of the biaxial strain
gy and the fracture touchness 4. A highly simplified technique used in practice largely
for screening purposes is an energy balance approach [30]. It is usually assumed that in a
single “cell” formed by surface cracks, the energy available for fracture is provided by the
strain energy within the cell, whereas the energy needed to create the fracture surfaces is
the energy sink. The major assumption here is that, as a result of cracking, the entire
strain energy inside the volume of the cell is released, which, in piecewise homogeneous
materials, leads to the following energy balance relation:

Upg=U, , Uy =AbW , U, =8b($,/2) , W=e}E/(1-Vv), (40)
where Uy is the strain energy per cell, Up is the dissipated energy per cell, A is the
surface area of the cell, b is the crack depth, W is the strain energy density, S is the
peripheral length of the crack for a single cell, and 4./2 is the energy required to create a
unit fracture surface. If the cell is an n-sided regular polygon with center to apex distance

¢, then
A=" c2sin®) S =2nc sin(Y) . 41)
2 n n

The shape of the polygon or n must be such that for a unit surface area Ug/Up is
maximum. For the purpose of determining n one may assume that A is “unity”. Thus,
eliminating ¢, for given g, and 5/2 the condition Ugr/Up=max. may be replaced by

A/S=max., from which it would follow that
_ 1 T \\-172 _
(4/8) = E(n tan(—))™"* = max. 42)
n

Technically, (42) gives the expected result, namely n=c or a circular cell. However,
since the plane cannot be divided continuously into circles of equal radii, physically this

result is not acceptable. The admissible regular polygons are triangle, square and
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hexagon. Since A/S is a monotonously increasing function of n, the acceptable solution

of (42) would be n=6 or a regular hexagon, which is generally the observed result [30].

For hexagonal cells we have 4 = 34/3¢? /2, S=6¢ and from (40) we find

g2 = 20-V) (43)

C =
0 '\/§E c

where c is the length of the side of the hexagon. Equation (43) gives the relationship

between the cell size and the biaxial strain in the general periodic surface cracking
problem. Note that in this simple model the criterion found is independent of the crack
depth.

Similar results may be obtained if we assume the cracking medium (constrained
single layer or coating) is FGM. For hexagonal surface cracking from the energy balance

equation Ug=Up, it may easily be shown that
5 b b
esg = 7= [8. () ([EGx)de 1 (1-v)) (44)
0 0

where }, and E are the fracture toughness and Young’s modulus of FGM and b is the
crack depth. Note that in FGMs the cell size vs. biaxial strain relationship found is now
dependent on the crack depth. It is possible that (44) may again be useful for screening
purposes if one assumes the crack depth to be equal to a certain percentage of the FGM
coating thickness h.

The preceding technique' is very highly approximate. Since the corresponding
three-dimensional elasticity problem for the periodic surface cracks is analytically
intractable, to shed some light on the subject one may consider a simple two-dimensional
problem. The simplest such problem of periodic surface cracking of a FGM coating
bonded to a homogeneous substrate under antiplane shear loading was recently
considered in [17*]. In this study it was assumed that the substrate is a half space having -

the shear modulus p, and the shear modulus of the FGM is given by

1 () = 1y (0)exp(Br) , B = %log<p—“(2—(5) | (45)
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where pn,(0) is the shear modulus of FGM on the surface, x=0, and h is the thickness of
the coating. It is further assumed that the coating contains periodic surface cracks with
the period 2c and depth b, and the medium is subjected to a constant strain
2g , (x,Fo) =y, through fixed grips (Fig. 24).

The results of an example showing the stress relaxation on the surface of the
coating as a result of periodic cracking are shown in Figures 25 and 26. Note that as
c/h—0 the surface stress 6;,,(0,y) would tend to zero everywhere and, as c/h—co,
01y,(0,¢) would approach 1, the surface shear stress for the uncracked coating. We also
note that the previous simple periodic cracking model assumes the stress to be zero
within the entire cell, that is, 6,,,(0,y)=0, 0<y<c. Figures 25 and 26 show that this is
hardly the case. |

Another interesting result of this study is shown in Figures 27 and 28. Here V, is
the actual strain energy reléased per unit area of the coating as a result of periodic
cracking. V, is calculated from the elasticity solution for the cracked medium. U, is the

total strain energy contained in the volume 1x1xb and is calculated from
b .
Uy=Ug/2 , Uy=cy; [u(x)dr . (46)
; _

Clearly, the physics of the problem requires that
lim ¥V, =U, . (47)

c—>0

Figures 27 and 28 show that the assumption made for the previous simple model to the
effect that the entire strain energy contained within the cell is relieved and is transformed
into fracture energy may be justified only for very small values of c/h and, in general,
only a certain percentage of the total energy is available to overcome the fracture energy.
Figures 29 and 30 show the way one may use the basic results giving the stress
intensity factor as a function of the crack depth in fracture stability studies in FGM
coatings. Assuming that near the surface the FGM is 100% ceramic and near the
interface 100% metal, in this example the mode III fracture resistance parameter ks,

obtained from

ks (%) = 2p(x) b5, (x) /7] (48)
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is taken to be an increasing function of x as shown in the figures. Consequently, the
FGM coating would exhibit an R-curve (crack-extension-resistance-curve) behavior.
That is, since the fracture toughness increases with increasing crack length, the load
amplitude must be increased continuously to keep the crack growing. Thus, the threshold
value T, = p,(0)y o and the critical value t_ = pu,(0)y ,, may be obtained by requiring
that the corresponding k;(b) curves envelope k;.(x) from below and from above,
respectively. For 1, <1, <7 the crack would grow in an unstable manner in the region
for which k;>k;, and becomes arrested when k;<k,,.

Extensive results on the periodic cracking of FGM coatings under Mode III
loading conditions may be found in [17°]. The plane strain problem of periodic cracking
for a homogeneous coating and for a single homogeneous layer subjected to membrane

loading or bending was considered in [18‘].

3.6 End Effects on Stress Concentration and Edge Debonding

Generally the stress-free ends in bonded materials are locations of high stress
concentrations and potential debonding fracture. In bonded dissimilar homogeneous
materials the point at which the interface intersects the free boundary (or the apex of two
90 degree bonded wedges) is, in fact, a point of singularity near which the stress state is

given by [31]
K .
Gij(rse)=_ﬁ—ﬁ:j(e) s (’,J=st’) s O<B<1/2 s (49)
r

when (1,0) are the polar coordinates, § and F;; depend on the bimaterial constants and K is
a measure of the load amplitude or stress intensity. For B to be positive the material
properties need to be discontinuous across the interface. In FGM coatings, since the
material properties are made continuous through composition grading, it can be shown
that the singularity f becomes zero and, consequently, the stresses become finite [32].
Figure 31 describes the geometry of a specimen considered as an example. The
composite medium is assumed to undergo a homogeneous temperature change AT. The
problem is one of plane strain. The substrate is a nickel-based superalloy (Rene 41) and

the coating is either a piecewise homogeneous or a functionally graded metal/ceramic
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layer, the ceramic component being partially stabilized zirconia (PSZ). The
thermomechanical constants of the two materials are

E=219.7 GPa, v=0.3 , a;=1.67x10"°K™" |

E=151 GPa, v=0.3 , a;=10"°K
where the subscripts s and c refer to the substrate and the ceramic, respectively. The
stepwise variation of the material properties in piecewise homogeneous coatings is shown
in Fig. 32. Some calculated results are shown in Figures 33-37. For the FGM coating
used in the example, the modulus variation is given by

E;, 0<y<0.0125 m.
E(y)= {

0.0145-
EcHEE) (—

)? , 0.0125<y<0.0145 m.
0002 ~

The same expression is ued for the thermal expansion coefficient, . Figure 38 shows the
thickness variation of the stiffness E(y) (or the thermal expansion coefficient a(y) for the
three FGMs considered, namely the metal-rich, linear and ceramic rich compositions.

Figures 33 and 34 show the interface stresses oyy(X,h,) and oy, (x,h;) for the
piecewise homogeneous coating. Note that since the material properties are
discontinuous for y=h,, the interface stresses become unbounded for y=h,, x—{. The
corresponding results for the FGM coatings are shown in Figures 35 and 36. It may be
observed that as a result of material property smoothing (or eliminating the property
discontinuities), the stress singularities are eliminated and at the point y=hy, x= 6,,(x,h,)
becomes bounded and o,,(x,h;) becomes zero. One may also observe that, except for
values of x near the end (x=/), the behavior of interface stresses for piecewise
homogeneous and FGM coatings are quite similar. Figure 37 shows the variation of the
tensile stress oy,(l,y) at the ends of the specimen for 0<y<h,+h,. Note that at the interface
y=h, there is a stress concentration and the stress concentration factor 6,,/c, decreases
with increasing metal content of the coating. Further results on this problem may be
found in [8'].

The effect of material orthotropy on the crack driving force for homogeneous

debonding layers was considered in [19*] and [20']. In [19*] the plane strain problem of
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debonding crack initiating from a free end was studied. The problem of a T-shaped crack
simulating the debonding process that is initiated from a surface crack terminating at the

coating/substrate interface was considered in [20‘].

3.7 Some Concluding Remarks

From the viewpoint of fracture mechanics the “functionally graded materials”
seem to offer certain advantages among which one may mention the following:

@) By eliminating the discontinuity in material property distributions, the
mathematical anomalies regarding the crack tip stress oscillations for the interface cracks
and the non-square-root singularities for the cracks intersecting the interfaces are also
eliminated. In practice the importance of this result lies in the fact that in FGMs one can
now use the crack tip finite element modeling developed for the ordinary square-root
singularity and apply the methods of the energy balance-based theories of the
conventional fracture mechanics.

(i)  Application of FGMs as interfacial zones in joining generally
incompatible materials would greatly improve the bonding strength.

(iii) Use of FGMs as coatings and interfacial zones would reduce the
magnitude of the residual and thermal stresses. . |

(iv) Use of FGM coatings and interfaces would eliminate the stress
singularities at the points of intersection of interfaces and stress-free ends in bonded
materials.

(v)  Replacing homogeneous coatings by FGM layers would both enhance the

bonding strength and reduce the crack driving force.
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Figure 1:  Notation for a plane crack in a nonhomogeneous medium.
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Figure 2: Geometry and notation for a plane crack in bonded homogeneous and

nonhomogeneous materials.
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Figure 3:

Singular behavior of the irregular kernels for an interface crack in bonded

dissimilar materials.
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Fig.4: Geometry of the interface crack for a functionally graded coating bonded to a

homogeneous substrate.
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Fig. 5 The influence of h; /a on the normalized strain energy release rate b; loading:
uniform crack surface pressure G ,, v=0.3, by /a=100, (1) iy /a=1,(2) hy 1a=035,
(3) hy /a=025.
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Fig. 6 The influence of hy /a on mode I stress intensity factor k, loading: G, v=0.3,
h /a=100, (1) hy /a=1,(2) hy/a=05,(3) hy la=025.
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Fig.7 The influence of h; / a on mode II stress intensity factor k,, loading: 6 ,, v=0.3,
hy /a=100, (1) hy/a=025,(2) hp /a=05,(3) hyla=1.
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Fig. 8 The influence of hy /a on 4, ldading: uniform crack surface shear io , v=0.3,
h /a=100, (1) hy /a=1,(2) hy/a=05,(3) hy /a=025.
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Fig.9 The influence of h, /a on ky, loading: T, v=0.3, by /a=100, (1) by /a=1,
(2) hy 1a=05,(3) hp /a=025.




ka/Ko 1.3 -

1.2 -
3
1.1 -
2
1.0 -
1
0.9 :
-3 -2 -1 0 1 2 3

Fig.10 The influence of hy /a on k;, loading: fo, v=03 hy/a=100, (1) hy/a=1,
(2) hy /a=05,(3) h /a=025.
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Fig.11 The effect of the coating thickness hy / a and the nonhomogeneity constant Y on
the probable crack growth direction 0,, loading: ©,, v=03, h/a= 100, (1)
hy 1a=10 & 100, (2) hy la=2, (3) hpla=1, (4) hy/a=05, (5) hy la=025.
(The angle 8, is measured at the crack tip a from the positive x axis.)




SR 7
7/ﬁC ﬁC ,8c 7/:80

Fig. 12 Normalized stress -intensity factors for a plane crack
terminating at the interface between a homogeneous medium and
a FGM half space.
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Fig. 13 The geometry of a surface crack in a

FGM layer.
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Fig. 14

The stress distribution in the uncracked layer under fixed grip loading
’ 2
oy = Eqg/(1 —v7).
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Fig. 15 The stress distribution in the uncracked layer under membrane loading,
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Fig. 16
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The stress distribution in the uncracked layer under bending, oy, = 6M / b2,
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Fig. 17  Stress intensity factor for an edge crack in a graded layer under fixed grip

loAding, a=0,0p= Eleo(l - 1/2).
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Fig.18 Stress intensity factor for an edge crack in a graded layer under membrane

loading, 2 =0, o, = N/h.
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Fig.19  Stress intensity factor for an edge crack in a graded layer under bending,
a=0,0, = 6M/h%
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Fig. 20 Thermal stress distribution in a FGM layer with
' E2/E1=5, a2/u1=2, undergoing a uniform temperature change,
T3=Ty=T, T<T,.
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Fig. 21 Thermal stress distribution in a FGM layer with
Eo/E1=10, op/a1=2, X9/X1=10, under steady-state heat
conduction; T(h)=T5=0.5T,, T(0)=Tj variable.
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Fig. 22 Normalized Stress intensity factor kl(b)/oo/g for a
surface crack in a FGM layer under the stress state shown in
© Fig. 20 (Eo/E1=5, oc2/o¢1=2).
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Fig. 23 Normalized stress intensity factor for a surface crack in
a FGM layer under the stress state shown in Fig. 21 (E,/E;=10,
a2/a1=2, X2/x1=10).
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Fig. 24 Geometry of periodic surface cracks in a FGM
coating on a homogemeous substrate.
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Fig. 25 The stress ,,,(0,y) on the surface of a periodically cracked FGM
coating bonded to a homogeneous medium under remote constant shear

strain vo; Bh = 0.5, b/h = 0.1, 7o = 7o,(0).

Fig. 26 Same as Figure25 fh = 0.5, b/h = 0.5, 7o = 7ou(0)-




1.0 .

0.8 -
V, 0.6 0.90 .
Uy b/h={ 0.75

0.4 | 0.50

0.2 +

0.0 1 " 1 1 L L

0.0 05 1.0 1.5 2.0 2.5 3.0

c/h

Fig. 27 Released strain energy per unit surface area of a periodically
cracked FGM coating bonded to a homogeneous substrate under constant
strain loading 7o; Bk = 1.0, U; = (1/2)p,(0)72 (P2 = 1)/8.
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Fig. 28 Same as Figure 27 fh= —1.0, Uy = 3 (0)73 (e — 1)/8.
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Fig. 29 Fracture instability for periodic cracks in a FGM coating on a
homogeneous medium under constant strain 7, Bkh=1.0, ¢/h=0.5,

To = '70#1(0)-
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Fig. 30 Same as Figure29 gh = -1.0, ¢c/h = 0.5, 7o.= 76;1(0).
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Fig. 31 The geometry of the coating/substrate considered
as an example.
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Fig. 32 Stepwise distribution of the elastic modulus
for a single, two and four layer homogeneous coatings.




i r? Singularity Near the
0.20 Free Edge of Interface---
0.15
i o - Four Layers
o° 010 A : Two Layers
o i ¢ * One Layer
0.05
0.00 & S -
-0.05 1 [ 1 | L | 1 | ! J
0.000 0.004 0.008 0.012 0.016 0.020
x (m)

Figure 33 Variation of normalized o, along the Ist interface of laminated homogeneous
coating; 0, = E ot AT.
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Figure 34 Variation of normalized ¢, along the 1st interface of laminated homogeneous
coatings; ¢, = E ot AT.
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Figure 35 Variation of normalized G, along the interface y=0.0125m for FGM coatings;
c, =E o AT.
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Figure 36 Variation of normalized G, along the interface y=0.0125m for FGM coatings;
G, =E0AT.
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Figure 37 Variation of normalized o, along the end x=¢=0.02m for FGM coatings;
c,=E o AT.
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Fig. 38 Distribution of the elastic modulus E(y) for the FGM coating.




